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MASS TRANSFER BETWEEN PHASES AND WATER TRANSPIRATION IN 

A MEDIUM HAVING DOUBLE POROSITY 

Yu. A. Buevich and U. M. Mambetov UDC 532.546 

Two limiting models are proposed for exchange involving porous granules containing water in the 
condensed and vapor states. The water uptake rate by plants can be related to the water content. 

A model exists for  water transport in soil that incorporates plant root transpiration, which leads to a quasilinear 
parabolic equation for  the water content, but it involves major empirical elements and far f rom always correctly reflects 
the actual processes [ 1 ]. This is due in part to the transport mechanisms assumed and in part to the description of the 
plant water uptake. The first aspect has been discussed in [2], where water filling was considered for a two-pore medium 
that simulated a granulated soil. The second amounts to determining the transpiration rate as a function of soil water 
content. 

Various forms of  that relationship have been proposed [3-6]. It is usually approximated as a kinked line consisting 
of several straight sections, with the coefficients taken as certain universal parameters completely determined by root 
mass density and plant physiology. In fact, that approach is essentially incorrect because the transpiration rate is 
dependent not only on the water content in the soil but also on the transport rate directly to the roots. The latter varies 
with the soil structure. Therefore,  for  a given water content, the transpiration rates for  given plants will be dependent 
on the water transport in the soil, i.e., one cannot consider the process as universal. 

1. We represent the soil as consisting of contacting porous granules [2], which for simplicity we take as identical 
spheres. The plant roots usually lie in the gaps between the granules and absorb water vapor [3]. We assume that 
condensed water occurs only within the granules, and the water enters the space between them by evaporation and 
transport in the granules. The rates are usually much less than the mixing rates in the intergranules space on scales of 
the order of  the characteristic microstructure length, so the vapor concentration c can be taken as homogeneous. It is 
realistic to assume that the rate-limiting step in transpiration is water absorption at the root-surfaces, not transport in 
the gas. One then represents the uptake as a f i rs t -order  reaction, and the mass of water absorbed in unit volume of soil 
in unit time is kc, where k is the product of the specific area of the active root-system surface and the rate constant for 
the reaction, which may be considered as known. 

Several physical mechanisms are involved in water transport within the granules [1, 7, 8]. Heuristically, one can 
distinguish transport in the condensed state by capillary impregnation, the motion of  thin liquid films diffusion in sorbed 
layers, and so on, as well as diffusion of the evaporating water in the pore space not filled by liquid. 

The simultaneous description of those processes is exceptionally complicated, as is familiar f rom drying theory 
[8]; to consider the essence, we discuss only simple models, which correspond essentially to different  transport rates in 
the condensed and vapor states subject to some simplifying assumptions. 

2. Let  the condensed-water  transport rate be much less than the vapor rate in the gas. Then we get a model for 
the evaporation front  r = R(t) in each granule, which separates the region r < R, in which part ~ of the pore space is 
filled by condensed water, f rom the part containing water only as vapor [9]. The front  as a zero-thickness surface is an 
idealization, because there are size differences in the capillaries and pores, and saturation pressure differences over the 
corresponding menisci, together with transport of condensed or sorbed water, so the front  is diffuse and there is a f inite- 
thickness inhomogeneous zone. However,  the model with a step change in water content a the front  is acceptable if  that 
thickness is much less than the granule radius R o. 
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Fig. 1. Granule water-content dynamics. 

Fig. 2. Water-content dependent of  transpiration rate. 

The vapor diffusion within a granule is described in the quasistationary approximation subject to obvious 
conditions of  the first kind at the front and the outer surface. Then we get expressions for the vapor pattern and mass 

flux from the front (per granule) 

c ' ( r ) = c , - -  Ro r - - R  (c,--c), 
r R. - -  R 

(1) 

q = 4nD'  RoR (c,  - -  c), 
Ro - -  R 

which are dependent on time as a parameter. The masses of water in the regions r < R in the granules and outside them 
per unit volume of  the soil are 

w - = w (  1 + ' 1 - •  c , ) ,p  w = ~ d ( l _ e ) ( @ ) 3 9 ,  

" R " R 3 (2) 

l[ oi "§ w+ 2 

R R c} 

where w means the condensed water content in the soil. 
The second expression in (2) is obtained by integrating c'(r) from (1) for the part R < r < R o of  the granule and 

then multiplying the result by the numerical granule concentration n = 3(1 --s)/4~rPo3. The mass content of vapor in the 
space between the granules per unit soil volume is ec. 

The water mass conservation equations for those regions ar 

d (ec + w+)/dt = - - k c  + nq. 

C =  c 3D' c ,  

c, • 

(3) 

(4) 

dw_/dt = - -nq ,  

We introduce the dimensionless quantities 

117-- w 
• - -  ~) 9 

in which W -- (R/Ro) 3 is the ratio of  the true condensed water content in the granules to that corresponding to uniform 
saturation of  the pore space with a given degree ~; C is the relative vapor pressure in the space between the granules. 
From (1) and (2), we get for the quantities (4) from (3) that 

1 + 1 - - •  % )  d W  W 1/3 
• p , dT l _ _ W 1 / a  ( l - - C ) ,  

{ e ' ( 1 - - ~ )  I 1 c. d eC-+ W I / a ( I + W 1 / a ) - - 2 1 V +  
x e ' ( 1 - - ~ )  p d'c 2 (5) 
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j WII3 
+ ( 2 - - W  '/a(1 +W1/a))  C = - - c t C + - - I _ _ W  1 / a '  

kR~ 
a(1 - -~)D'  " 

Clearly, c. /p is less than one by many orders of  magnitude,  and if  c. /p << ~;, one naturally uses the small- 
parameter  method in solving (5), with W and C as power series. For practical purposes, it is sufficient  to take the first 
terms, and the equations for  them follow f rom (5) with c./p = 0. The second equation gives 

C = W 1/3 [W 1/3 + cz (1 - -  W1/a)] -1, (6) 

and the first af ter  substitution f rom (6) gives 

dW ~zW ~ /3 (7) 

d~ W 1/3 + ~z(1 - -  W 1/s) 

The solution to (7) with initial condition W(0) --- W o is 
(8) 

1 _ 1 ( W o - - W ) + - ~ -  

An arbi trary initial condition imposed on C in general is not obeyed,  as (6) shows, because of the loss of the 
derivative dC/d r  in (5) in the smal l -parameter  method. To satisfy that condition we need an additional internal 
expansion in the solution to (5) in the boundary layer represented by small r, where we consider (6) and (8) only as an 
external expansion, and then use an asymptotic l ink-up procedure [10]. The internal independent variable can readily 
be shown to be r" -(~c, /p)r ,  i.e., an extent for  the boundary layer less by a factor  ~c,/p than the characteristic time 
scale for these processes, which means physically that C relaxes f rom an arbi trary initial value to that defined by (6) 
much more rapidly than (6) varies. As c,/~p << 1, that relaxation can be neglected. With W o -- 1, (6) implies C(0) = 1, 
which is a natural initial condition corresponding to a thermodynamic equilibrium state at the start. In that particular 
ease, it is not necessary to construct the internal expansion. 

Figures 1 and 2 show the dependence of W on r and of - -dW/dr  on W for  W o = 1 and various a. The intercepts 
on the ordinate in Fig. 1 give the dimensionless t ime for complete granule dehydration,  for  which part  ~ of  the pore 
space at the initial instant is completely filled with condensed water, and in particular 

•  p (9) • p ~ >> 1; t* ~ cz << l, 
t* ~ 6D' c, ' k c, ' 

i.e., t* is determined only by the rate of  the rate-l imit ing process. 
Figure 2 shows that the W dependence of - -dW/dr  can vary considerably with ~; it represents the transpiration 

rate up to terms of  order c,/~p for  a > I,  and it increases more rapidly than in proportion to W, while for  a < 1, it does 
so more slowly. With a >> 1, the W dependence is very strong, while if  c~ << 1, - -dW/dr  is approximately constant at 
for all water contents, apart  f rom the region W < c, 3. This shows why it is fruitless to a t tempt  to formulate a universal 
dependence of  the transpiration rate on the water content unrelated to the soil structure. 

3. I f  the condensed-state transport  rate is much higher than the evaporation and diffusion rates in the granules, 
one naturally assumes that the condensed water is uniformly distributed in the granules at any time, and then the 
evaporation is simultaneous in all parts of  each granule, while the diffusion is described in the quasistationary 
approximation by 

D" 1 d / o dc' "~ (10) 

e-7 ) ~ 

The diffusion coefficient  is of  course dependent  on the pore space within the granules accessible to the vapor. 
The assumption made here that D'  is constant is approximately true only for  relatively small g. The kinetic coefficient 
" /and the vapor  equilibrium concentration c, can also vary over time because of changes in the transfer of water 
molecules f rom the condensed or adsorbed state to the gas, e.g., as a results of  sequential evaporation f rom the steadily 
smaller pores and capillaries. Those affects  are neglected here for simplicity. 
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Fig. 3. Parametric dependence of  the transpiration rate. 

Fig. 4. Solving the equation for  the impregnation depth: x = ~o/k. 

There are many discussions such as in [11] on the justif ication for using phenomenological  equations such as 
(10) to describe dif fusion in adsorbent grains, catalysts, and so on. The quasistationary approximation in (10), as in the 
diffusion equation for a model  with a moving evaporation front, is justified because the transpiration is slow, t ime- 
scale ~ t~p/c , .  Similar arguments have been put forward previously [12] for transport in a medium with double gas 
porosity and sorption capacity on the pore wails. 

The solution to (10) subject to regularity at r = 0 and c' = c at r = R o is 

c ' ( r ) = c ,  ~sh~o ( c , - - c ) ,  ~ =  V -TUrR, 
( l l )  

q : 4aD'Ro (~0 cth to - -  1)(c, - -  c), to = 1 /  --~-7- Ro. 

The following are the water mass-balance equations in dimensionless form analogous to (5) when terms of order 
c,/~;p are neglected: 

dW/dT = -- (1-- C), l - - C - - 1 3 C = O .  (12) 

3D' c, 
"c - (~o cth ~o - -  1) t, 

x~'Ro O 
03)  

Here W and C are still defined by (4), but 

kRg 

= 3 ( 1 - - e ) D ' ( ~ 0 c t h ~ o - - 1 )  = ~octh~o--1  ' 

and x now means the proport ion of the pore volume in the granules filled by condensed water at the start. 
The solution to (2) is trivial: 

1 {~ (14) 
C -- , W = Wo "c 

1+]3  1 + ~  

(here W cannot be defined as (R/Ro) ~, and it decreases as a result of  the proportional decrease in the proportion of the 
volume occupied by the condensed water f rom the initial value ~). The second initial condition (for C) is not conAdered 
for the reasons given above. 

The transpiration rate is equal to - -dW/dr  if  terms of order c,/t~p are neglected, and in the present case is 
independent of  W. However,  it is dependent  on the kinetic coefficients characterizing the evaporation, diffusion, and 
uptake by the plants. In the limiting cases of  relatively fast and slow evaporation, 

dW kRo 
d-c a(1 - ~ )  ~V~-D' ' " (IS) 
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dW k 
- - - - ~  , ~o( ' (  I. 

d'r (I - -  s) ~, 

In the second case, the transpiration is not dependent at all on the quantities characterizing the diffusion rate. 
Figure 3 shows the ~o and a dependence of  --dW/dr.  The complete dehydration time is 

t * =  Wo(- -  d~)-'dx = cz + ~ o c t h ~ o - -  1 ~  Wo, (16) 

and the dependence on Co and a is the converse of that shown in Fig. 3. 
These results are useful not only in describing transpiration trends and using them for particular cases but also 

because they enable one to judge what conditions must be provided (e.g., how far the soil should be granulated) to 
provide the desired transpiration rate. 

4. The following are simple examples of  these results applied to transport. We consider the stationary case of 
unpressurized irrigation with a constant flow rate f rom the free surface of the soil, which contains uniformly distributed 
roots. If  the soil is hydrophilic,  the unpressurized infiltration occurs in a system of contacting granules, with the gaps 
between them almost everywhere filled by moist air [2]. The vapor transport in that space is by diffusion, i.e., in the 
stationary case, 

Dd~c/dx z + nq - -  kc = 0, (17) 

in which x is the vertical coordinate, which is reckoned downwards from the surface. In the section 2 model, flow is 
possible in the granule system only at R = R o, so in that case one has to assume that in the wetted soil zone (x < h), the 
granules are uniformly saturated, while outside it, they do not contain any condensed water. The mass flow of vapor 
from all the granules in unit volume for ~; ~ const is 

(18) 
nq=qo(c , - -c) ,  r O . < x < h ,  

where ~ characterizes the evaporation rate f rom unit area of the surface of a saturated granule and is roughly speaking 
proportional to % In the section 3 model, instead of (18) we have 

3 (1 - -  e) D' (19) 
nq=r  r  R~ (~octh~0--1), 0 < x < h ,  

in which ~o is defined in (11) no matter what the granule filling. For x > h, nq = 0 in both cases. 
We take the vapor flux from the free surface as zero and specify continuity in the concentration and flux at 

x = h together with bounded values for  x ~ 00 to get f rom (17) and (18) or (19) that 

~p + k ch (%h) + (~/~:) sh O~h) c, ,  0 < x < h; 

C =  m 
qo exp [--v (x - -  h)] 

c,, h < x < oo, 
r + k 1 + (v/Z) cth (s 

~ =  D ' 'v----- , 

(20) 

which defines also the transpiration rate kc distribution. 
This h can be derived from the condition for equality of the total mass of water evaporating in unit time to the 

given mass flow rate Q at the surface, i.e., f rom 
h (21) 0 o  

0 0 

From (20) we get an equation for r/= ~h: 

r q (q~ + k) ~, (22) 
f ( , ~ )  = ,~ + = _ , 

whose solution finally determines the (20) concentration distribution for the vapor. Figure 4 shows f0/) for  various 9/k.  
The condensed-water  distribution remains in general unknown, to derive it explicitly, one needs to consider a 

transport model for  the condensed state in a granule system on the basis for  example of  the Buckley-Leveret t  theory. 

3 5 0  



A second example is that of establishing thermodynamic equilibrium in a granulated porous medium ,as a result 
of gas desorption from the pore walls after the equilibrium has initially been perturbed by sharp reduction in the 
pressure [12]. Here one naturally uses the section 3 model. We introduce the partial pressure p = (RgT/M) of the gas 
capable of sorption and the value p, corresponding to thermodynamic equilibrium, where the section 3 results give 
successively 

dp = (23) e - -  = ~p (p, --  p), In P , - - P o  ! ~ ,  
dt p, - - p  s 

with ~o defined in (19), where the interpretation of that quantity is the new feature by comparison with [12], and Po = 
p(0). 

The second formula in (23) is useful for measuring ~ from the slope of In(p, -- p) against t. If the relaxation 
( 

terminates with the establishment of a pressure p < p,, the sorption capacity is defined by 

w = ( M / R ~ T ) ( p *  - -  P o ) .  (24) 

Similarly, one can consider other more complicated cases, including nonstationary ones, for water o~ sorbed- 
gas transport in the presence of internal absorption and phase transitions or sorption and desorption. 

NOTATION 

c and C, dimensional and dimensionless vapor concentrations; D, diffusion coefficient; h, impregnation depth; 
k, absorption coefficient; M, molecular mass; n, numerical granule concentration; p pressure; Q, and q, mass fluxes per 
unit area of free surface on irrigation and from one granule; R and Ro, radii of evaporation front and granule; Rg, gas 
constant; r, radial coordinate; T, absolute temperature; t, time; w and W, dimensional and dimensionless water contents 
in the condensed state; x, vertical coordinate; t~ and fl, parameters defined in (5) and (13); % 6, and ~o, evaporation 
coefficients; e, volume fraction of soil accounted for by gaps between granules; g, porosity of granule material; A and 
u, parameters introduced in (20); ~, volume proportion of pore space in granules occupied by condensed water; )7, 
dimensionless impregnation depth; ~, dimensionless radial coordinate; p, density of liquid; r, dimensionless time. A 
prime denotes a quantity within the granules, while a subscript asterisk denotes the equilibrium state, and a raised 
asterisk a quantity characterizing process termination. 
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